
We all love bash

Dulcie Vousden
Stephan Sanders

August 21 2017

Contents

1 What is UNIX? 1

2 What is a terminal? 1

3 I wish that someone had told me... 2

4 UNIX pointers 3

5 Navigating and moving files in UNIX 3

1 What is UNIX?

UNIX is an operating system, i.e. a framework of tools that makes computers
usable. You probably use UNIX already. It forms the foundation of both An-
droid (phones and tablets) and the Mac OS (Apple computers) and, to some
extent, iOS (iPhones and iPads). These are all examples of graphical operating
systems with UNIX underlying them. For example you press a button to open a
file which sends an Open command to UNIX, rather than you writing the Open
command directly. For ‘serious’ computing it remains more efficient to write
these codes directly rather than using the graphical interface since it is easier to
replicate text than mouse clicks. What we are really teaching is how to interact
with a UNIX-based computer more directly using a command line interface (i.e.
text), rather than the graphical interface you are probably used to.

2 What is a terminal?

This section is from http://ryanstutorials.net/linuxtutorial.
UNIX (Linux) has a graphical user interface and it works pretty much like

the GUI’s on other systems that you are familiar with such as Windows and
OSX. This tutorial won’t focus on these as I reckon you can probably figure

1

that part out by yourself. This tutorial will focus instead on the command line
(also known as a terminal) running Bash.

A command line, or terminal, is a text based interface to the system. You
are able to enter commands by typing them on the keyboard and feedback will
be given to you similarly as text.

The command line is an interesting beast, and if you’ve not used one before,
can be a bit daunting. Don’t worry, with a bit of practice you’ll soon come to
see it as your friend. Don’t think of it as leaving the GUI behind so much as
adding to it. While you can leave the GUI all together, most people open up
a command line interface just as another window on their desktop (in fact you
can have as many open as you like). This is also to our advantage as we can
have several command lines open and doing different tasks in each at the same
time. We can also easily jump back to the GUI when it suits us. Experiment
until you find the setup that suits you best. As an example I will typically have
3 terminals open: 1 in which I do my working, another to bring up ancilliary
data and a final one for viewing Manual pages (more on these later).

A question that may have crossed your mind is ”Why should I bother learn-
ing the command line? The Graphical User Interface is much easier and I can
already do most of what I need there.” To a certain extent you would be right,
and by no means am I suggesting you should ditch the GUI. Some tasks are best
suited to a GUI, word processing and video editing are great examples. At the
same time, some tasks are more suited to the command line, data manipulation
(reporting) and file management are some good examples. Some tasks will be
just as easy in either environment. Think of the command line as another tool
you can add to your belt. As always, pick the best tool for the job.

3 I wish that someone had told me...

Learning to use the command line interface can be both inspiring and frustrat-
ing. The following hints, tips, and concepts will help you to learn these skills
quicker:

1. The computer does EXACTLY what you tell it. This is its greatest
strength, as it will faithfully reproduce a result or apply a process equally
across all data. It is also the computer’s greatest weakness - if you tell it
to delete all your work it will do so without a second’s hesitation

2. The computer is not intelligent. If you ask it to go to a directory (aka
folder) named myHomeDirectory, but misspell it as myHomeDirectory, it
will simply tell you that it can’t find the directory without volunteering
that a similarly named directory is right there.

3. Location matters, both of yourself and the files. Along with what files,
directory, or programs you want to run, you need to tell the computer
where they are relative to yourself. You can find where you are using the
command ‘pwd’.

2

4. The files and directories are arranged like a tree so it is easier to move up
and down the branches rather than sideways between the branches.

5. Keep a copy of successful commands (and sometimes unsuccessful ones).
The next time you try to do the same task you can just copy and paste.

6. Almost all UNIX commands follow the same pattern: command/program
options files

4 UNIX pointers

1. If a command fails assume there is a typo before trying anything else.

2. If that does not work, ask yourself, ‘am I in the right place (pwd), are the
files in the right place, are the programs in the right place?’.

3. If that fails, ask yourself, have I told the computer everything it needs to
know? For example does it know the program to use, the input files, and
the output files?

4. Spaces and punctuation (except for period, underscore, dash) in file or
directory names only lead to misery and hurt. Avoid them.

5. The most useful keys are tab, up, and down.

6. Anything is possible, but some things are easier than others.

7. After you run a command try to confirm that it has worked. For example,
is there an output file? Is there anything inthe output file? Do the contents
of the output file look as you would expect?

8. It pays to be systematic. Think about ways to name and organize files
that will make sense in two years time.

5 Navigating and moving files in UNIX

Telling the computer where programs and files are located relative to where
you are (pwd) is a fundamental skill in UNIX. Editing and moving files is also
critical. Table 1 shows a list of basic commands for this navigation and the
treasure hunt activity will give you practical experience of using these.

Table 1: Bash command examples

Command Example What it does it tell us

Tab Tab Autocomplete the name of the
program/file/directory

3

Tab Tab Tab Tab Show a list of potential autocomplete options for
the program/file/directory

UpPress the up arrow Show the last command that you wrote; press again
to see the one before it and down arrow to go in
reverse

Ctrl-cHold Ctrl + press c STOP! Kills the currently running command.

ls ls Lists contents of your current working directory

ls path/to/dir/ Lists contents of path

ls file*txt Lists all files that start with ‘file’ and end with
‘txt’. An * is what’s called a ’wildcard’ character.

ls -l Lists contents (long listing format – more
information)

ls -lh Long listing format, human readable file size

ls -R Lists contents recursively (including subdirectories)

ls -a List all files, including hidden files that do not show
by default. The names of hidden files will start with
a .

ls -t List files by time/date

ls -r Reverse order while sorting (i.e. ls –t will display
newest to oldestwhereas ls –tr will display in oldest
to newest)

mkdir mkdir foo Makes a directory called foo within the current
directory

rmdir rmdir foo Permanently removes the directory foo; only works
if foo is empty

cd cd path/to/dir/ Change directory; takes you to the directory
path/to/dir/

cd ../ Go back one directory

cd ../../ Go back two directories

cd ../../foo Go back two directories and forward into the
directory foo

cd Go to home directory

cd /mnt Go to mnt directory

mv mv file1.txt
file2.txt

Rename file1.txt to file2.txt

mv file.txt
/path/to/dir/

Move file.txt into path/to/dir/

mv -i file.txt
/path/to/dir/

Move file.txt into path/to/dir/ and prompt before
overwriting

4

mv file1.txt
/path/to/dir/file2.txt

Rename file1.txt to file2.txt in directory path/to/dir

cp cp file1.txt
file2.txt

Copy file1.txt to a second file named file2.txt

cp file.txt
/path/to/dir/

Copy file.txt into path/to/dir/

cp -i file.txt
/path/to/dir/

Copy file.txt into path/to/dir/ and prompt before
overwriting

cp -R dir1
/path/to/dir/

Copy dir1 into /path/to/dir/

rm rm file.txt Permanently remove/delete file.txt

rm -R foo Permanently remove/delete directory foo and all its
contents

rm -i file.txt Permanently remove file.txt, with prompting

find find /mnt
-name file.txt

Find all instances of a file called file.txt in /mnt or
any directories within /mnt.

. cp
path/to/dir/file.txt
.

The period means ‘here’. In the example the file is
copied to the current directory

pwd pwd Shows where you are: present working directory

man man ls Displays unix manual on ls (all commands have a
man page)

gzip gzip file.txt Compresses file.txt to make file.txt.gz

gunzip gunzip
file.txt.gz

Uncompresses file.txt.gz to make file.txt

gunzip -c gunzip -c
file.txt.gz

Uncompresses file.txt.gz to make file.txt but keeps a
copy of file.txt.gz

tar tar xfvz
file.tar.gz

‘gunzip’s and expands the tarball (a collection of
files and directories)file.tar.gz

touch touch file.txt Creates empty file file.txt if it does not exist

nano nano file.txt Opens file.txt in a text editor

vim vim file.txt Opens file.txt in another text editor

head head file.txt Displays first 10 lines (by default) of file.txt

tail tail file.txt Displays last 10 lines (by default) of file.txt

less less file.txt View (but not change) file.txt

grep grep banana
file.txt

Searches file.txt for lines containing banana

> ls> foo.txt STDOUT: take output and create/overwrite to
foo.txt

5

>> ls >> foo.txt STDOUT: take output and append to foo.txt

2 > ls > foo.txt 2 >
foo.err

As above, but also STDERR error messages are
written to foo.err

< perl test.pl <
file.txt

STDIN: use file.txt as the input

| ls | grep .txt >
textFiles.txt

Pipes STDOUT from one command (ls) to be the
STDIN for thenext (grep)

6

