
Analysis of longitudinal imaging data

Darren and Lily Aug 24, 2017 MISS

Why be interested in longitudinal data?

- 1. Can see time course changes of neuroanatomy
 - a. When do differences emerge?
 - b. How do they change?

Example: development of sex differences

Why be interested in longitudinal data?

- 1. Can see time course changes of neuroanatomy
 - a. When do differences emerge?
 - b. How do they change?

Example: development of sex differences

- 2. Possibility of predictive modelling
 - a. If we know something about the brain at p3, what can that tell us about the brain at p65?

How is longitudinal data different from cross-sectional?

- Cross-sectional data: individual is measured/observed at one single time point (i.e. ex vivo MRI study)
- Longitudinal data: repeated measures/observations made at various timepoints for the same subject (i.e. in vivo MRI study)
- For longitudinal data:
 - Correlation between repeated measurements within the same individual
 - Data points from the same subject are not independent

How do we overcome these challenges?

- Repeated measures ANOVA
 - a. Repeated measures ANOVA works only for a completely balanced experiment
 - i. I.e. no missing time points
- 2. Linear mixed effects models: more general/flexible
 - a. Fixed effects
 - i. Age, sex, treatment, etc
 - b. Random effects
 - A random effect for each mouse
 - 1. Baseline differences in the brain for each individual mouse