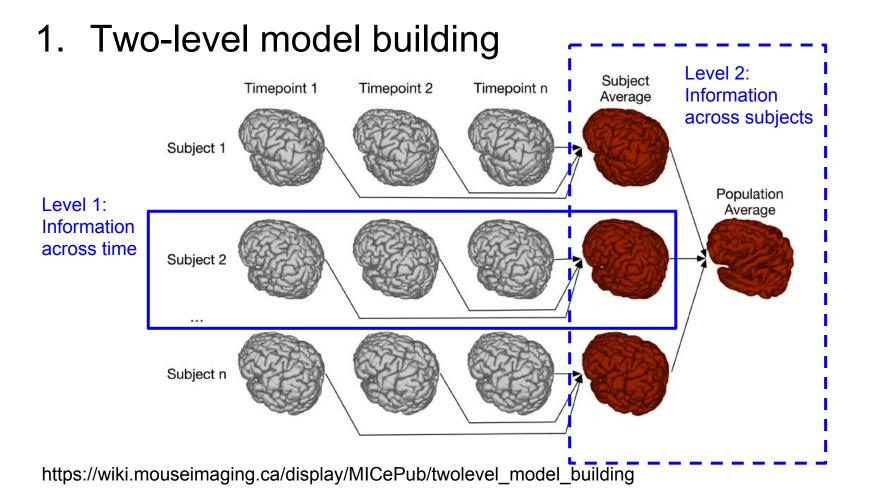

Longitudinal registration strategies

Darren and Lily Aug 24, 2017 MISS

Challenges posed by longitudinal data

1. Gross alterations of brain morphology (size and shape) across development

2. Images from same individual register better than those from different individuals


Registration is flexible: There are multiple ways of combining temporal and spatial information

How do you combine information?

- Develop a hierarchical model of registration
- Allows us to move up in complexity as we go up the hierarchy
- We typically use registrations that are hierarchical at MICe
- Spatial or temporal information can be contained in level 1 and/or level 2 of our registration

Pydpiper

- Pydpiper is a development toolkit, written in Python, for creating modular, distributed pipelines.
 - Replace or modify the parameters
 - Modularized, discrete stages can be removed, modified, or replaced
 - Parallelization: remotely distributes stages to computing clusters
 - Interdependencies
 - Executors
- Pydpiper allows us to efficiently program our registration strategies.

twolevel_model_building.py \

- --num-executors=600 \
- --init-model=[init model] \
- --pipeline-name=test \
- --lsq12-protocol=[lsq12protocol.csv] \
- --nlin-protocol=[nlin-protocol.pl] \
- --registration-method=ANTS \
- --output-dir=test \
- --no-run-maget \
- --default-job-mem=8 \
- --maget-no-mask \

--csv-file=TwoLevelFiles.csv — Each row = same subject

https://wiki.mouseimaging.ca/display/MICePub/twolevel_model_building

Pros, cons and when to use two-level

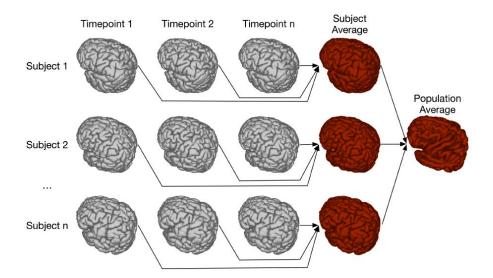
Pros:

• Unique features within subject are maintained

Cons:

• If there are gross morphological changes across time, Level 1 registration will not be that good (eg. neonate and adult)

When to use:

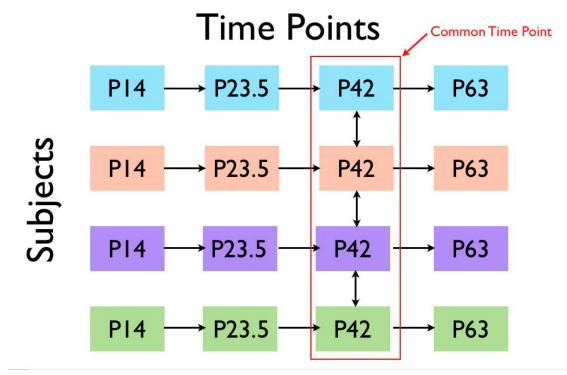

• Changes across individuals are greater than those across time (eg. timepoints are p20, p30 and p40)

Two-level registration: activity!

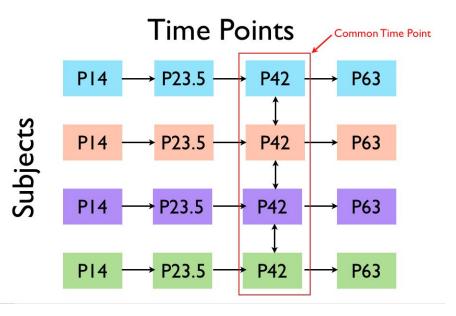
3 subjects, 3 timepoints.

List the transformation needed to go from subject 2, timepoint 1, to population average

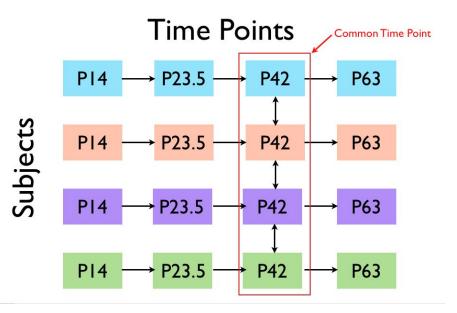
- Register with all subject 2 timepoint images to create subject 2 consensus
- 2. All subject consensus averages registered
- 3. Population average



Levels 1 and 2 for registration types

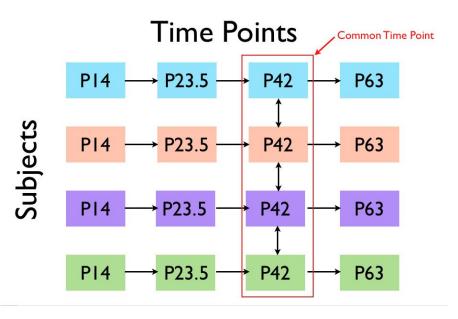

Registration Type	Level 1	Level 2
Two-Level	 Same subject, including all timepoints. Information across time 	 Across subject consensus averages Information across subjects
Registration Chain		
Tamarack		
Overlapping Group-Wise		

Types of Registrations	Pros	Cons	When to use
Two-Level	 Unique features within subject are maintained 	 If there are gross morphological changes, registration will not be as good (i.e. neonate & adult) 	 Changes across individuals are greater than those across time ie. p20, p30, p40
Registration Chain			
Tamarack			
Overlapping Group-wise			

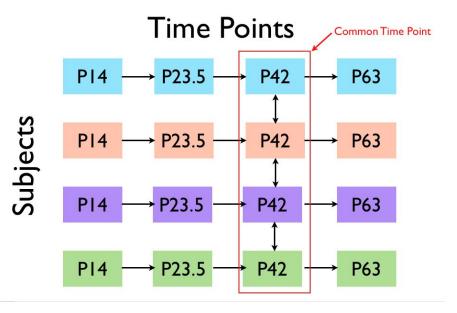

2. Registration Chain

• Registration between sequential timepoints within each subject.

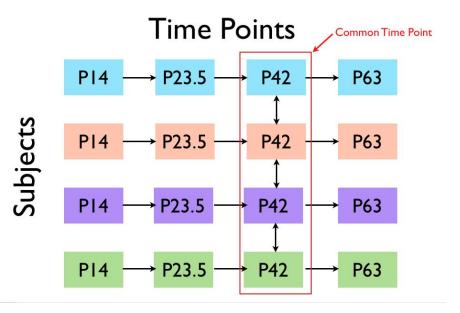
- Registration between sequential timepoints within each subject.
- Useful when subject brain differ greatly and have highly individualized time-courses
 - For example: tumour-prone mice

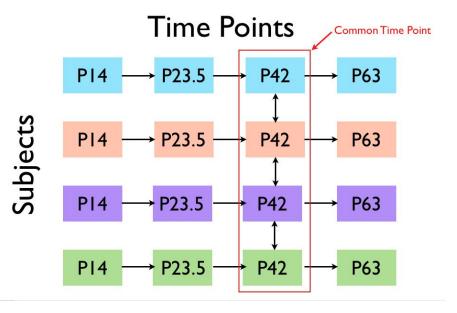



```
registration_chain.py \
```

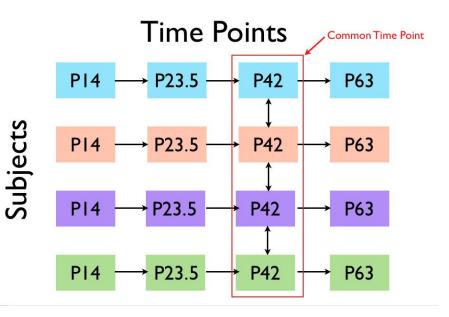

- --pipeline-name=test \
- --num-executors 12 \setminus
- --latency-tolerance 1800 \setminus
- --lsq12-protocol [lsq12protocol.csv] \
- --chain-common-time-point 3 \setminus
- --pride-of-models [initmodelmapping.csv] \
- --chain-csv-file list_of_files.csv

https://wiki.mouseimaging.ca/display/MICePub/Longitudinal+Registration+Tools

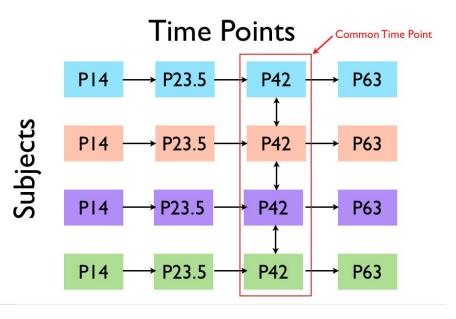

What do the determinants tell us?


 Level 1 determinants tell us the volumetric development of a subjects

- Level 1 determinants tell us the volumetric development of a subjects
- Level 2 determinants tell us the volumetric differences between subjects

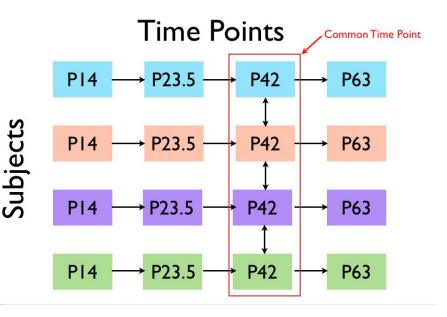


List the transformation needed to go from P23.5 in subject 1 to P14 in subject 3?



List the transformation needed to go from P23.5 in subject 1 to P14 in subject 3?

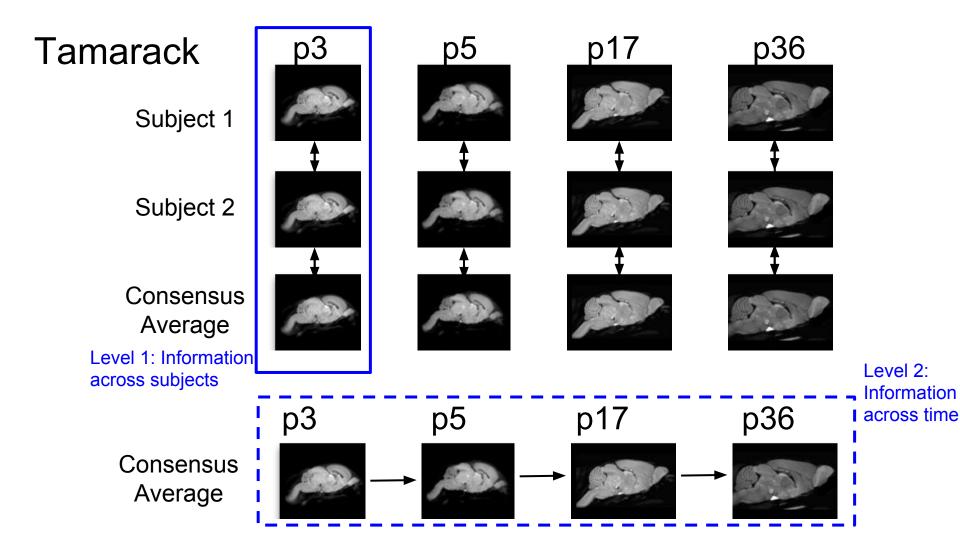
- 1. Subject 1 P23.5 \rightarrow Subject 1 P42
- 2. Subject 1 P42 \rightarrow consensus average
- consensus average → Subject 3
 P42
- 4. Subject 3 P42 \rightarrow Subject 3 P23.5
- 5. Subject 3 P23.5 \rightarrow Subject 3 P14



Disadvantages?

Disadvantages?

- Model building (high SNR consensus) happens last
- Transformation error can propagate to dependent timepoints
- If subject is missing a single timepoint, subject is ignored


Levels 1 and 2 for registration types

Registration Type	Level 1	Level 2
Two-Level	 Same subject, including all timepoints. Information across time 	 Across subject consensus averages Information across subjects
Registration Chain	 Within subject, across sequential timepoints Information across time 	 Across final timepoint consensus averages Information across subjects
Tamarack		
Overlapping Group-Wise		

Types of Registrations	Pros	Cons	When to use
Two-Level	 Unique features within subject are maintained 	 If there are gross morphological changes, registration will not be as good (i.e. neonate & adult) 	 Changes across individuals are greater than those across time ie. p20, p30, p40
Registration Chain	 Captures gross differences across time and across subjects 	 Consensus averaging (increases SNR) happens last, therefore noise gets propagated Requires a balanced design 	 Gross changes across time and across subjects i.e tumour in one subject, not in the other
Tamarack			
Overlapping Group-wise			

3. Tamarack

Pros, cons and when to use Tamarack

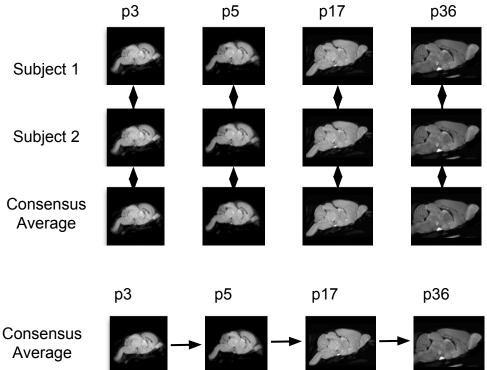
Pros:

- Works well for subtle changes in neonatal data
- Preserves cross-sectional differences across time

Cons:

- Does not work when there are gross changes across subjects
- Introduces biases when there is a correlation analysis

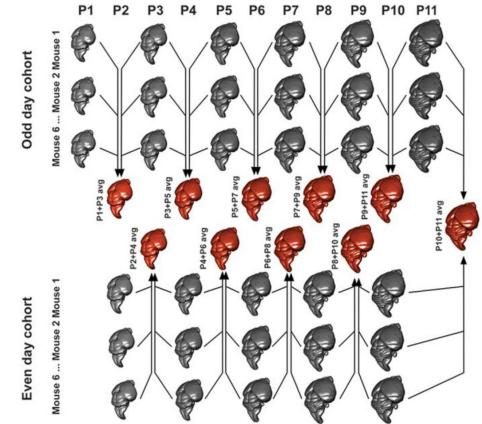
When to use:


• Gross morphological changes across time, but subtle across subjects (eg. development of sex differences)

Tamarack registration: activity

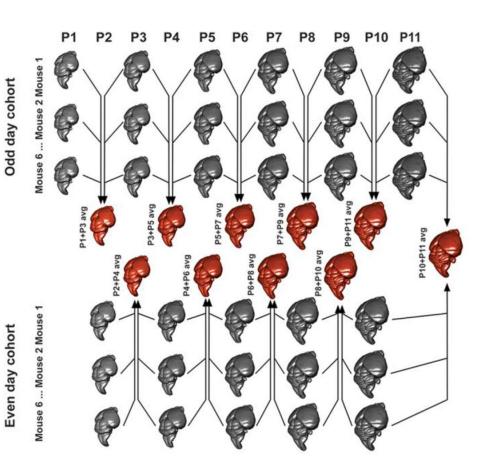
2 subjects, 4 timepoints.

List the transformations needed to go Subject 1 from subject 1 at p3 to p36 consensus average Subject 2

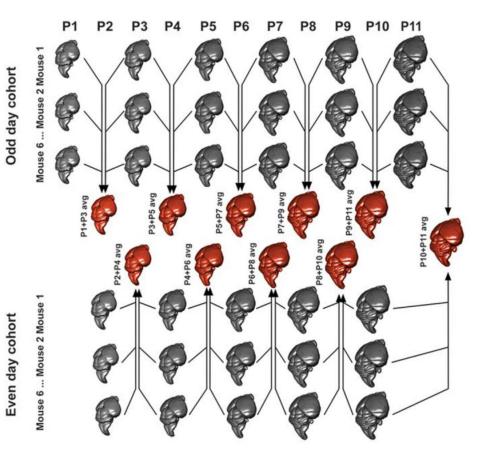

- Register with all p3 images together
- 2. p3 consensus average \rightarrow p5 avg
- 3. $p5 avg \rightarrow p17 avg$
- 4. $p17 avg \rightarrow p36 avg$

Levels 1 and 2 for registration types

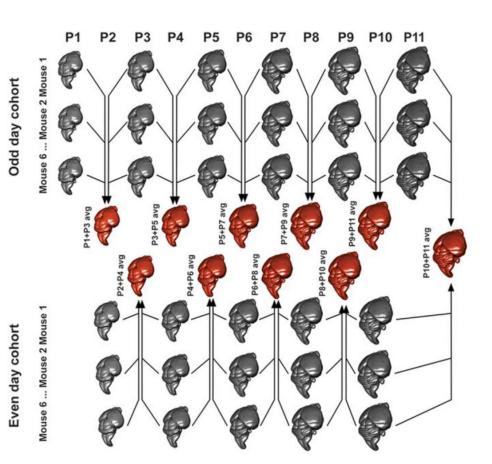
Registration Type	Level 1	Level 2
Two-Level	 Same subject, including all timepoints. Information across time 	 Across subject consensus averages Information across subjects
Registration Chain	 Within subject, across sequential timepoints Information across time 	 Across final timepoint consensus averages Information across subjects
Tamarack	 All subjects at each time point Information across subjects 	 Consensus averages across sequential timepoints Information across time
Overlapping Group-Wise		


Types of Registrations	Pros	Cons	When to use
Two-Level	 Unique features within subject are maintained 	 If there are gross morphological changes, registration will not be as good (i.e. neonate & adult) 	 Changes across individuals are greater than those across time ie. p20, p30, p40
Registration Chain	 Captures gross differences across time and across subjects 	 Consensus averaging (increases SNR) happens last, therefore noise gets propagated Requires a balanced design 	 Gross changes across time and across subjects i.e tumour in one subject, not in the other
Tamarack	 Works well with subtle changes in neonatal data Preserves cross-sectional differences over time 	 Does not work when there are gross changes across subjects Introduces biases when there is a correlation analysis 	 Gross morphological changes across time, but subtle across subjects i.e. sex differences
Overlapping Group-wise			

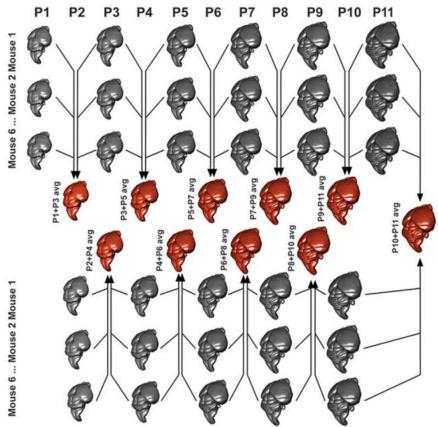
- Register adjacent timepoints of each cohort.
- Register last timepoint in each cohort together.
- Useful when brain undergoes gross changes over time.
- And when subjects brains evolve similarly.
- Provides information on variability of temporal changes



What do the level 1 and level 2 determinants tell us?


What do the level 1 and level 2 determinants tell us?

- Level 1 determinants tell us intra-cohort spatiotemporal volumetry
- Level 2 determinants tell us inter-cohort spatiotemporal volumetry


What are the transformations needed to go from mouse 1 P1 to mouse 6 P2?

- 1. Mouse 1 P1 \rightarrow P1+3 avg
- 2. P1+3 avg \rightarrow P3+5 avg
- 3. P3+5 avg \rightarrow P5+7 avg
- 4. P5+7 avg \rightarrow P7+9 avg
- 5. P7+9 avg \rightarrow P9+11 avg
- 6. P9+11 avg \rightarrow P10+11 avg
- 7. P10+11 avg \rightarrow P8+10 avg
- 8. P8+10 avg \rightarrow P6+8 avg
- 9. P6+8 avg \rightarrow P4+6 avg
- 10. P4+6 avg \rightarrow P2+4 avg
- 11. P2+4 avg \rightarrow Mouse 6 P2

What are the disadvantages?

- **Balanced Design**
- May introduce cohort biases

Even day cohort

Odd day cohort

Levels 1 and 2 for registration types

Registration Type	Level 1	Level 2
Two-Level	 Same subject, including all timepoints. Information across time 	 Across subject consensus averages Information across subjects
Registration Chain	 Within subject, across sequential timepoints Information across time 	 Across final timepoint consensus averages Information across subjects
Tamarack	 All subjects at each time point Information across subjects 	 Consensus averages across sequential timepoints Information across time
Overlapping Group-Wise	 Within cohort Information across time and information across subject within same cohort 	 Across cohort Information across time and across subjects in different cohorts

Types of Registrations	Pros	Cons	When to use
Two-Level	 Unique features within subject are maintained 	 If there are gross morphological changes, registration will not be as good (i.e. neonate & adult) 	 Changes across individuals are greater than those across time ie. p20, p30, p40
Registration Chain	 Captures gross differences across time and across subjects 	 Consensus averaging (increases SNR) happens last, therefore noise gets propagated Requires a balanced design 	 Gross changes across time and across subjects i.e tumour in one subject, not in the other
Tamarack	 Works well with subtle changes in neonatal data Preserves cross-sectional differences over time 	 Does not work when there are gross changes across subjects Introduces biases when there is a correlation analysis 	 Gross morphological changes across time, but subtle across subjects i.e. sex differences
Overlapping Group-wise	 Works well with subtle changes in neonatal data Preserves cross-sectional differences over time Exposes subtle temporal differences in subjects 	 Requires a balanced design (no missing data!) 	 Same as Tamarack, except you cannot have any missing data!